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Predicting filament drift in twisted anisotropy
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Excitable media with twisted anisotropy have recently been attracting significant interest because of their
applicability to wave propagation in heart tissue. Here we consider the dynamics of an intramural scroll wave
whose filament lies initially within an arbitrary layer of mutually parallel cardiac fibers, and drifts parallel to
itself from layer to layer. Earlier simulations have demonstrated that such a filament stabilizes in a layer whose
fiber direction is the same as its own. In the present paper we analytically derive the trajectory of the filament,
and obtain good agreement with earlier numerical data. For sufficiently sparse scrolls, our analysis predicts an
equilibrium alignment perpendicular rather than parallel to the fibers.

PACS numbd(s): 82.40.Ck

I. INTRODUCTION simple geometrical terms as followsf. Ref.[8], with some

. . . minor differences in notatign Consider az axis across the
The heart muscle is a prime example of an excitable me-

. . - . . —wall, and assume that eaxly plane is uniformly anisotropic,
dium with nontrivial geometrical structure. To understand its_ . L I )

L . ith principal velocities of propagatio¥ ., andV,, along
wave activity it has been natural to ignore the geometry aﬁ:e lane: their magnitudaé, . andV,. are independent of
first; but the next challenge to theoretical understanding haZ Agz inéreases tﬁe directi8>r(1 of annig]otro tw?sts at & con-
been to incorporate one of the principal features of that geé.tant rate so th av makes an anale Py
ometry, namely, twisted anisotrop{,2]. Here we examine max 9
its effect on scroll waves, which are known to occur in heart 9=kz (1)
tissue[3,4] and are a suspected cause of cardiac arrhythmias.
~ Inthe mammalian heart, sketched in Fig. 1, the anisotropwith thex axis (k= constant). We note that at=0 the fibers
is manifested by a location-dependent direction of theare in thex direction, while atz=m/2k they are in they

muscle fibers, further complicated by the existence of curvedirection. In actual heart tissu¢,can changéalbeit nonuni-
layers of muscle interspersed with connective tissue. The fi-

ber direction, or longitudinal direction, is associated with a
greater speed of propagation for the excitation waves than
the transverse directions. We focus our attention on an intra-
mural scroll wave whose instantaneous filament resides
within a layer of mutually parallel fibers, as indicated by the
insets of Fig. 1(We do not address the transmural cgsé],

nor do we address the effects of discreteness in the space
lattice or in the actual tissu¢e].)

In a recently published studj8], some of us have re-
ported on the drifting behavior of such an intramural scroll
wave whose end effects can be neglected. Initially, the fila-
ment intersects the fibers in its layer at an arbitrary angle; it
is then found to drift parallel to itself towards an equilibrium
layer where fibers and filament have the same direction. This
scenario was obtained computationally, using a FitzHugh-
Nagumo (FHN) model whose parameters were adjusted to
produce physiologically reasonable wave forms. The present
work concentrates on this process of parallel drift, and treats
the phenomenon analytically; the result is a theoretical for-
mula that predicts the drift velocity. Changes in the sign of
the velocity are used to locate the equilibrium layers, and the
direction of the change determines whether the equilibrium
is stable or unstable. Integrating the velocity leads to a good

prediction of the filament's trajectory in space time. FIG. 1. Twisted anisotropy in the ventricular wall. In this
sample locatior{top insej the fibers rotate over about 120° across
Il. MEDIUM the wall. The dissected slices make up a cube, illustrated in the

bottom inset. In the cube we show a snapshot of the scroll wave
In order to represent a limited sample of the cardiac wallwith its filamentF. The latter can be thought of as lying within one
it is instructive to model the twisted anisotropy in very of the tissue sections.
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formly) by about 120° over the thickness of the ventricular The main results of our simplifying transformation
free wall; as we have indicated above, the maximum velocity{x,y,z} —{X,Y,Z} are as follows. First, as indicated above,
is in the direction of the muscular fibers. Propagation inzhe and as displayed in Eq15) further on, it permits us to stan-

direction will be considered to occur at speég;,. dardize the drift problem, now restated as follows: To find
Let the variablesi andv propagate in a three-dimensional the drift of a spiral wave in a spatially uniform isotropic
FHN-type medium according to medium perturbed by a spatially uniform convection. Sec-
ond, we obtain and test explicit formulas for the drift trajec-
du—d;(Djjdju) + @4 (u,v) =0, (2 tories in the actual twisted anisotropic medium.
(?tv+q)2(u,v):0, (3)

IIl. FROM GRADIENT TO SPATIALLY UNIFORM

where®; and®, are generic reaction functions; in our no- CONVECTION

tation we have(x}={x,y,z}, and sums over repeated indi- |5 gytiine, the argument involves three successive trans-
ces are understood. The diffusivity tensor has the compOymations of the space coordinates. Let the scroll wave's

nents|8] instantaneous axis of rotation have #tsoordinate equal to
D,;=D, co€ 9+ D1 sir? 6, some valuez, at_timeto. Our assu_mption of a Iocal dyn_am-
ics allows us to introduce as our first transformation a linear-
Dy,=D, sir? 6+ Dy cog 6, ization of the diffusivity tensor in the vicinity of=z,; we
replace the sinusoida dependence of the diffusivity com-
D1,=Dy=(D_—Dy)cosésind, (4)  ponents by a term linear m-z,. The second transformation
rescales the twisted medium globally in such a way that isot-
D33=Dr, ropy is restored at= z,; anisotropy will of course persist or
even worsen in other layers of the medium. In particular, the
D13=D23=D3;=D3=0, xy components of the diffusivity still show a gradient in the

. ) z direction atz=z,. However, because no variables depend
with 6 given by Eq.(1). In the aboveD, andDr+ are, rela-  ony we have a two-dimensional spiral drift problem in the
t!vely to the fibers, the longitudinal and transverse diffusivi- , plane: the problem involves a linear diffusivity gradient,
ties, withD >D+>0. . and no convection. Thus, the medium is still nonuniform as

Having specified the medium, we select the scroll wave tQye|| as anisotropic. The third transformation is quadratic in
have its axis of rotatiottaxis of the filamentin they direc- e space coordinatesandz It is designed to remove the
tion; thus, they coordinate is not involved in the equations of |inear diffusivity gradient everywhere, but only to first order
motion. We are dealing with a spatially two-dimensionali the gradient's amplitudé.e., to first order in the rate of
problem, in which our goal is to determine the filament's yist). The transformed medium possesses, instead of a gra-
possible drift trajectories in terms of th&,z,t} coordinates. dient, a convection in the fast variable, and is now fully
The basic assumption of our approach will be that only the,niform. A simple mapping becomes available between the
immediate vicinity of the filament is of any relevance in giandard-drift solution and the one being sought.

determining its behavior; briefly stated, the filament dynam-  ransformation 1.Applying the linearization of thd;
ics is local.(In this paper’s conclusion we make some CoOM-;_. ¢ according to

ments on the validity of that approximationVe focus on
the spatial nonuniformity of Eq¢4), whereD;; depends on z=2z9+{, 60=0u+k{ ({smal) (5)
z through the angle: in the vicinity of a typical planez
=2, (zo=const), D;; exhibits a gradient in the direction. yields
We now demonstrate that the nonuniformity in the me-
dium can be transformed away, at least in the vicinity of D;j=D{j+2k(D_ —~D7)Dj;{+0(£?), (6)
somez=z,, by a transformation of coordinates, which re-
places the gradient by @niform) convective perturbation, where
and leads to a standardized formulation of the drift problem.

o

Quantitative and qualitative data for such solutions are avail- Dioj =Djj(6—6o), @)

able in the literatur¢9]. The present paper promotes the idea N N )

that the case of a uniform convective perturbation can be D1,=—D3,= —cosf,sindy,

used as a standard for dealing with the more complex twisted L 1 )

anisotropy. D1,=D3=co0S f—sir’ by, (8)
What is meant here by “convective perturbation” can be

most succinctly described as follows: In E@®), a small D13=D3,=D3=D3,=D3;=0,

amount of space gradient adds itself to the time differentia-

tion according to and where, from here on, we neglect the terno(f?).

We next calculate the diffusion term in E®). From Eqgs.
h— =GV, (4) we already have before expansion
whereG is a small constant vector determined by the twist diD;j9;=Dj; 39,

constank and by the value of,. The time derivative in Eq. ) ) )
(3) is not affected because no diffusive term is present. =D1197+ D2d5+ D3ad3+2D15919,. 9
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Since in addition we consider the scroll to be parallel to the (3) Is transformatior{14) the only one, to ordeB/A, that
y axis, i.e.,d,u=0, we see that only the first and third terms removes the gradient? Uniquendss to trivial translations
of Eg. (9) contribute tod;(Dj;d;)u. Finally, with expansion of orderB/A in the XZ plang can be demonstrated by as-

(6), the diffusion term is reduced to suming a general form
3/(Dyja,u)=[(A+B{)d2+Drd?]u, (10) X=é+ayf?+byél+cxl?,
where Z={+a8+ b £l +c (16)
A=D, co€ + D+ sir? 6y, and requiring the gradient’s removal; solving for the coeffi-
cientsay, ... ,c; then yields Eqs(14).
B=—2k(c0S6, Sin 6y) (D, — D). (12) (4) As expected intuitively from the fact that both gradi-

ent and drift are seen ixz projection only, the sign of these

We conclude from Eq(10) that, under twisting, the effective guantities does not depend on whether the twist is right or
two-dimensional diffusivity tensor keeps its diagonal nature:€ft handed. Indeed, for a given changing the sign df in
however, itsx component acquires a gradient in thdirec-  Ed- (1) also changes the sign éf(or 6), and thus the sign
tion. Therefore, in contrast to the case of uniform anisotropy®f B in Ed. (11) is invariant. We také>0 for convenience.
the medium cannot be made isotroéren effectively, for
the scroll considergdby a trivial rescaling of one of the IV. DRIFT VELOCITY AND TRAJECTORY
spatial directions. It can, however, be made spatially uni-
form, as described further on.

Transformation II.A global rescaling, X,{)—(&,¢):

In this section we make use of the transformations de-

scribed above in order to predict the actual filament drift in

twisted anisotropy on the basis of tligimple) uniformly

£=(Dr/A)Y%, (12) qonvective scenario. Suppose that, in a preliminary cglcula-

tion or from theory, we have solved, &dB/A), for the drift

velocity of a spiral obeying the FHN equatiof® and (3),

but with a diffusivity term given by Eq(15). We assume, as

is in fact the case here, that any drift is entirely gradient

induced or convection induced, i.e., that there is no meander-

u, (13 ing. BecauseéB/2A depends on parameters and coordinates,
as shown in Eq(11), it is convenient to replace that quantity,

) ) for reference, by a small and positive, but otherwise arbi-

where, a’=0, the operatorg; andd; now have the same ary standard perturbatioB. Thus, we seBD/2A—G,

to obtain local isotropy at=z, ({=0). Equation(10) be-
comes

1+B
K(

&i(Dij&ju):DT &?4‘(9?

coefficient. _ _ and look up the existing solution for the drift velociw,
Transformation Ill. A quadratic transformation, §{({)  \hose magnitude is proportional ®, and whose direction
—(X,2): is independent ofc [9]. Hence we are able to refer to a
B 5 “standard drift vector”V/G, independent o6. How is the
Xe e — 7ot — g2 14 actual drift of the scroll filament, saWw, related toV/G?
& &¢, { & (14 : : . .
2A 4A We consider the instant of time when the centers of the spi-

ral's core and of the scroll’s filament coincide with the origin
For smallB/A, and after some partial-derivative algebra, thisof coordinates {=Z=0). Because transformatioii4) be-

leads directly to the desired form, comes the identity at that location, we only invert transfor-
mation (12) in order to get fromV/G to W/(BD+/2A). We
9i(Dyjdju) =D+ 95+ 97+ (BI2A) dz]u+ o[ (B/A)?], then have
(15
A \Y2/BD+\(Vy
with A andB given by Eq.(11). The term B/2A)d,u corre- Wic= (D_T) (ﬁ) (E) (17)
sponds to a convection with velocitgD+/2A in the —Z
direction for the variablei only. BD+\[Vy
Some comments are of interest at this stage. z= (ﬁ) (E) (18)

(1) The device of a quadratic transformation to remove a
gradient was first applied in ReP], where the medium was  the answer to our problem.
assumed |Oca.”y iSOtrOpiC. The details of the transformation In order to determine the equ”ibrium p|anesl we examine
are different, however: In that reference, the transformatione sign ofV,. In what follows it is convenient to select a
is conformal, whereas here, in EG.4), it is not. standard case as typical, and to reverse signs where appro-
(2) Comparison of Eq910) and(15) shows that a relative  priate. From the study of spiral drift in Reffd] it appears
gradientB/A in Eq. (10) gives rise to a convectioB/2A in  thatV/, andB usually have opposite signs, unless the spiral is
Eq. (15). The factor 1/2, which is not present in Rg8], is  quite sparse, as happens under weak excitability. Thus, we

to be eXpeCted here from the fact that the tWiSt, being abo%onsider the case of Opposite Signs and assug're(), o)
thez axis, changes the propagation velocity in ¥wirection  thatB>0, and from Eq(11)

but not in thez direction. In contrast, Ref9] deals with a
gradient in both principal velocities. ml2k<z<wl/k (modulom/K). (19
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FIG. 2. A family of spatial trajectories for the filament in the

—m/2k

case of a clockwise rotating scroll. The filament is oriented along

they direction; itsxz projection is a point that moves away from an
unstable plande.g., dashed lineand towards an adjacent stable
plane(e.g., heavy ling Which trajectory is the actual one depends
on the filament'’s initial position.

The complementary intervals ha¥,>0. Figure 2 shows
the resultant equilibrium planes, stable and unstable.
The complete space-time trajectory of the drifting fila-

ment can now be found, still under the assumption of a lo-

cally determined drift velocity. We first note that, in the uni-
form mediumXZ, and in the absence of meandering, the
drift angleI” (angle from the+ Z direction toV) is constant
throughout therectilineay trajectory. How doe$’ map into
I'’, the local drift angle of the actual filament? From Egs.
(17) and(18) we have

W D l/2v
W =( ~ v (20
W, | A Vy
or
DT 1/2
cotl'’ = ( A) cotl’, (21

wherel is considered known, and§ /A)Y? depends on,
through Eq(11). In what follows we drop the subscript “0”
of Eq. (5) in order to consider the full range afwithin the
bounds of Eq(19). To determine the trajectory it is conve-
nient to solve for botkx andt in terms ofz. Consideringk(z)
first, we usedz/dx=W,/W,=cotl"”, or from the explicit
expression for Eq(21),

(an incomplete elliptic integral of the second kind; the lower
integration limit is arbitrary, since we can start the filament
at anyx). Figure 2 shows a family of such trajectories. In
Fig. 3, we compare Eq22) with simulation points from Ref.
[8].

Next, to findt(z), we combine Eqgs(18) and(11):

tanl’ [kz
=7k

D
—co

1/2
& 9+ sir? 0) do
Dy

(22)
/2

dz (VZ)kDT(DL—DT)coskzsinkz 23
dt G/ D, cogkz+Dysirfkz
which integrates to
D, In|sinkz] — D+ In|coskZ
\ )
=——k*D{(D_ —Dy)t+const. (29

G
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FIG. 3. Trajectory of a simulated filamentkz projection in the
FHN-type model. The motion is top right to bottom left, and relates
to a clockwise rotating scroll. Formul@2) (solid curve accounts
very well for the drift datajpoints. The curve, which is a segment
from Fig. 2, can be translated arbitrarily in tRedirection. In this
and the next figure, the coordinate has been given the origin and
scale employed in Ref8]. As a consequence, the theoretical stable
equilibrium layer, where the filament and fibers are aligned, is at
z=1.875.

(The origin oft is arbitrary) This formula is plotted in Fig. 4
together with the corresponding data from H&f. Close to
stable equilibrium kz= 7/2+ks, s>0 smal) we have

G

t/r

s~(conste” k?(D_— D), (25)

while close to unstable equilibriunkg= 7—ks, s>0 smal)
we have

- o Simulation
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£50F .
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N

30T 000 l
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FIG. 4. The filament'sz coordinate as a function of time. The
origin of t is arbitrary. The agreement between theory and simula-
tion is very good except for some pinning on lattice sites where the
perturbation due to the twisted anisotropy is weak.
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1 Vo D lidity of local filament dynamics should, however, not be
s~(conspe*V”, —=- —ZkZ—T(DL— D). (26) inferred from the present work.
7’ G D, As far as the available simulation data are concerned, they

i ) are selected from Ref8] among those trajectories that are
We see that the'fllament is repelled f.rom'the unstable p""‘”@xpected to be least affected by proximity to a boundary.
at Dr/D_~1/9 times the rate at which it approaches theTnhat work uses a reasonable adaptation of the FHN model to
stable plane. _ _ o physiological conditions. The unperturbed scrdll (D1

An interesting alternative exists to the situation just de-_ 1) then has a cycle wavelengthot too close to the center

scribed. _Suppos_e that, in the convective system, sir_nulatiogf about 25 mm and a pulse wid¢for the fast variables) of
or experiment findsVz>0, contrary to the—z paradigm  ahoyt 8.5 mm:; thus, the scroll is not very dense, at least if
studied here. This means a drift opposite to the convectionyy the extent of the fast variable is considered. The total
as happend9,11] with the sparse spiralsand therefore neqiym thickness is 15 mm, with a total fiber twist of 120°.

sparse scroljsthat typically occur in weakly excitable me- (Boundary effects appeared to be mij@n the other hand,
dia. In Egs.(25) and (26) the exponents change sign; the \ye find only about 0.25 mm for the filament diametee-
stable and unstable equilibrium planes exchange their naturgy,oq by the region where the variabledeviates from its
and the stable equilibrium layers are now predicted to b‘?esting value by less than 50% of the maximal amount; the
those where filament and fibers are mutually at right anglesggoy, filament is about 1 mm in diametea fact which tends
to justify our linear expansion. We refer the reader to Ref.
V. CONCLUSION [8] for further details about the parameters.

This paper has examined the mathematical relation be- A word of cautiop Is ”eed?d copcerning sparse scro_lls,
tween two different drift phenomenéa) the alignment of a and the fact that their stable orientation appears to be at right

scroll filament with the local tissue fibers—or sometimes at"’“?gleS to the fibers. Two complications must be kept in
right angles to them—due to their twisting orientation, and™n@. o .
(b) the drift of a spiral wave in a convective medium. Our (a) Drift n the —z d|_rect.|on, aswe h".‘“’e seen, is related to
central results are the transformed diffusive term of @&) a model W'th copvectlon in that direction. Such a m_od(_al, as
and the drift formulag22) and (23). We have here another we mgnUoned, is also !‘S‘?d t9 under§tand the ;hrmkmg of
instancelcomplementing Ref$9,10]) where the analytic ap- scroll _rl_ngs:‘and that s_,hrmkmg Is often mterpre_zt_ed In terms of
proach to perturbative vortex drift turns out to be rewarding.a positive “tension™ In t_h_e filamen(12]. Positive tension
The reason is that, while the unperturbed situation is non”npror_notes.a form of stability that ten_ds o restore previously
ear and perhaps tractable only numerically, the perturbed on%ra'ght f."a'”f.‘?ms under perturbat!on. Co_nversely, under
amounts to an essentially linear problem in the perturbatioﬁ{"eak excitability, we expect a negative tension and hence an

if the latter is not too strong. In the present case, one mode dptrinsic shape instability fpr a_\_straight filament. We con-
Qlude that, under weak excitability, the expected perpendicu-

perturbation can have its effect deduced from that of anoth _ :
mode. More generally, we view our study as a step in aﬁar aht?lr)ment process could well be obscured by a competing
jnstability.

ongoing effort to gain some perturbative understanding o I . .
going gal perturbative U g (b) A large core, which is typical of sparse spirals, allows

drift phenomena. h iral tip t idel ibl K
Our results carry a specific message about the validity o& € spiral tip fo range more widely OVerpossibly weaken-
ing the convergence of our linear expansiorzin

local filament dynamics, as formulated in our case of a '®_ L :
Finally, we note that, in finite samples of tissue, parallel

straight filament without torsion. In this case, according tod i h | hani h its in the fil ;

local filament dynamics, the drift of a filament is determined Ir'l tis nott ?r?nz m?.g anlsr1'r_1ht at resu tsint € ||aments

only by its immediate environment. This is our only assump—"’llgnment with the Tibers. ere exists a simultaneous
boundary effect, not considered in the present article, which

tion, which we use to justify  linear expansion of the rmn_starts at the ends of the filament and eventually helps deter
if iffusivit ts; Figs. 4 displ high )
uniform diffusivity components; Figs. 3 and 4 display a hig mine its equilibrium direction8]. Even though both mecha-

degree of consistency with local filament dynamics. In addi- . . L
nisms lead to alignment and are concurrent in time, they can

tion, Fig. 4 is an excellent test for the details of theb distinguished ob ionally th h their ch e
guadratic-transformation method, Eq44), especially in- e distinguished observationally through their characteristic
time scales, which are in general quite different.

volving the factorB/2A in Eq. (15). Even though we study
straight filaments, the message of local dynamics carries over
to curved filaments. It confirms the appropriateness of the
often-made assumption that the filament's local curvature, if We are indebted to J. Jalife for providing our research
not too strong, determines its local drift, as for example inenvironment; we thank the American Heart Association,
the shrinking of scroll ring$3]. The relevance to scroll rings New York State Affiliate, Inc. for financial suppo(©.B.),

is due to the fact that, mathematically, filament curvatureand the National Blood and Heart Institute for Grant No.
amounts to a case of convective perturbation. Universal vaHL39707 (A.M.P. and M.W).
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