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Predicting filament drift in twisted anisotropy
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Excitable media with twisted anisotropy have recently been attracting significant interest because of their
applicability to wave propagation in heart tissue. Here we consider the dynamics of an intramural scroll wave
whose filament lies initially within an arbitrary layer of mutually parallel cardiac fibers, and drifts parallel to
itself from layer to layer. Earlier simulations have demonstrated that such a filament stabilizes in a layer whose
fiber direction is the same as its own. In the present paper we analytically derive the trajectory of the filament,
and obtain good agreement with earlier numerical data. For sufficiently sparse scrolls, our analysis predicts an
equilibrium alignment perpendicular rather than parallel to the fibers.

PACS number~s!: 82.40.Ck
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I. INTRODUCTION

The heart muscle is a prime example of an excitable m
dium with nontrivial geometrical structure. To understand
wave activity it has been natural to ignore the geometry
first; but the next challenge to theoretical understanding
been to incorporate one of the principal features of that
ometry, namely, twisted anisotropy@1,2#. Here we examine
its effect on scroll waves, which are known to occur in he
tissue@3,4# and are a suspected cause of cardiac arrhythm

In the mammalian heart, sketched in Fig. 1, the anisotr
is manifested by a location-dependent direction of
muscle fibers, further complicated by the existence of cur
layers of muscle interspersed with connective tissue. The
ber direction, or longitudinal direction, is associated with
greater speed of propagation for the excitation waves t
the transverse directions. We focus our attention on an in
mural scroll wave whose instantaneous filament resi
within a layer of mutually parallel fibers, as indicated by t
insets of Fig. 1.~We do not address the transmural case@5,6#,
nor do we address the effects of discreteness in the s
lattice or in the actual tissue@7#.!

In a recently published study@8#, some of us have re
ported on the drifting behavior of such an intramural scr
wave whose end effects can be neglected. Initially, the fi
ment intersects the fibers in its layer at an arbitrary angle
is then found to drift parallel to itself towards an equilibriu
layer where fibers and filament have the same direction. T
scenario was obtained computationally, using a FitzHu
Nagumo~FHN! model whose parameters were adjusted
produce physiologically reasonable wave forms. The pres
work concentrates on this process of parallel drift, and tre
the phenomenon analytically; the result is a theoretical
mula that predicts the drift velocity. Changes in the sign
the velocity are used to locate the equilibrium layers, and
direction of the change determines whether the equilibri
is stable or unstable. Integrating the velocity leads to a g
prediction of the filament’s trajectory in space time.

II. MEDIUM

In order to represent a limited sample of the cardiac w
it is instructive to model the twisted anisotropy in ve
PRE 611063-651X/2000/61~2!/1845~6!/$15.00
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simple geometrical terms as follows~cf. Ref. @8#, with some
minor differences in notation!: Consider az axis across the
wall, and assume that eachxy plane is uniformly anisotropic,
with principal velocities of propagationVmax andVmin along
the plane; their magnitudesVmax andVmin are independent o
z. As z increases, the direction of anisotropy twists at a co
stant rate so thatVmax makes an angle

u5kz ~1!

with thex axis (k5constant). We note that atz50 the fibers
are in thex direction, while atz5p/2k they are in they
direction. In actual heart tissue,u can change~albeit nonuni-

FIG. 1. Twisted anisotropy in the ventricular wall. In th
sample location~top inset! the fibers rotate over about 120° acro
the wall. The dissected slices make up a cube, illustrated in
bottom inset. In the cube we show a snapshot of the scroll w
with its filamentF. The latter can be thought of as lying within on
of the tissue sections.
1845 ©2000 The American Physical Society
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1846 PRE 61WELLNER, BERENFELD, AND PERTSOV
formly! by about 120° over the thickness of the ventricu
free wall; as we have indicated above, the maximum velo
is in the direction of the muscular fibers. Propagation in thz
direction will be considered to occur at speedVmin .

Let the variablesu andv propagate in a three-dimension
FHN-type medium according to

] tu2] i~Di j ] ju!1F1~u,v !50, ~2!

] tv1F2~u,v !50, ~3!

whereF1 andF2 are generic reaction functions; in our n
tation we have$xi%5$x,y,z%, and sums over repeated ind
ces are understood. The diffusivity tensor has the com
nents@8#

D115DL cos2 u1DT sin2 u,

D225DL sin2 u1DT cos2 u,

D125D215~DL2DT!cosu sinu, ~4!

D335DT ,

D135D235D315D3250,

with u given by Eq.~1!. In the above,DL andDT are, rela-
tively to the fibers, the longitudinal and transverse diffusi
ties, withDL.DT.0.

Having specified the medium, we select the scroll wave
have its axis of rotation~axis of the filament! in the y direc-
tion; thus, they coordinate is not involved in the equations
motion. We are dealing with a spatially two-dimension
problem, in which our goal is to determine the filamen
possible drift trajectories in terms of the$x,z,t% coordinates.
The basic assumption of our approach will be that only
immediate vicinity of the filament is of any relevance
determining its behavior; briefly stated, the filament dyna
ics is local.~In this paper’s conclusion we make some co
ments on the validity of that approximation.! We focus on
the spatial nonuniformity of Eqs.~4!, whereDi j depends on
z through the angleu: in the vicinity of a typical planez
5z0 (z05const),Di j exhibits a gradient in thez direction.

We now demonstrate that the nonuniformity in the m
dium can be transformed away, at least in the vicinity
somez5z0, by a transformation of coordinates, which r
places the gradient by a~uniform! convective perturbation
and leads to a standardized formulation of the drift proble
Quantitative and qualitative data for such solutions are av
able in the literature@9#. The present paper promotes the id
that the case of a uniform convective perturbation can
used as a standard for dealing with the more complex twis
anisotropy.

What is meant here by ‘‘convective perturbation’’ can
most succinctly described as follows: In Eq.~2!, a small
amount of space gradient adds itself to the time differen
tion according to

] t→] t2G•“,

whereG is a small constant vector determined by the tw
constantk and by the value ofz0. The time derivative in Eq.
~3! is not affected because no diffusive term is present.
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The main results of our simplifying transformatio
$x,y,z%→$X,Y,Z% are as follows. First, as indicated abov
and as displayed in Eq.~15! further on, it permits us to stan
dardize the drift problem, now restated as follows: To fi
the drift of a spiral wave in a spatially uniform isotrop
medium perturbed by a spatially uniform convection. Se
ond, we obtain and test explicit formulas for the drift traje
tories in the actual twisted anisotropic medium.

III. FROM GRADIENT TO SPATIALLY UNIFORM
CONVECTION

In outline, the argument involves three successive tra
formations of the space coordinates. Let the scroll wav
instantaneous axis of rotation have itsz coordinate equal to
some valuez0 at time t0. Our assumption of a local dynam
ics allows us to introduce as our first transformation a line
ization of the diffusivity tensor in the vicinity ofz5z0; we
replace the sinusoidalz dependence of the diffusivity com
ponents by a term linear inz2z0. The second transformatio
rescales the twisted medium globally in such a way that is
ropy is restored atz5z0; anisotropy will of course persist o
even worsen in other layers of the medium. In particular,
xy components of the diffusivity still show a gradient in th
z direction atz5z0. However, because no variables depe
on y, we have a two-dimensional spiral drift problem in th
xz plane; the problem involves a linear diffusivity gradien
and no convection. Thus, the medium is still nonuniform
well as anisotropic. The third transformation is quadratic
the space coordinatesx and z. It is designed to remove the
linear diffusivity gradient everywhere, but only to first ord
in the gradient’s amplitude~i.e., to first order in the rate o
twist!. The transformed medium possesses, instead of a
dient, a convection in the fast variable, and is now fu
uniform. A simple mapping becomes available between
standard-drift solution and the one being sought.

Transformation I.Applying the linearization of theDi j ,
z→z according to

z5z01z, u5u01kz ~z small! ~5!

yields

Di j 5Di j
0 12k~DL2DT!Di j

1 z1o~z2!, ~6!

where

Di j
0 5Di j ~u→u0!, ~7!

D11
1 52D22

1 52cosu0 sinu0 ,

D12
1 5D21

1 5cos2 u02sin2 u0 , ~8!

D13
1 5D23

1 5D31
1 5D32

1 5D33
1 50,

and where, from here on, we neglect the term ofo(z2).
We next calculate the diffusion term in Eq.~2!. From Eqs.

~4! we already have before expansion

] iDi j ] j5Di j ] i] j

5D11]1
21D22]2

21D33]3
212D12]1]2 . ~9!
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PRE 61 1847PREDICTING FILAMENT DRIFT IN TWISTED ANISOTROPY
Since in addition we consider the scroll to be parallel to
y axis, i.e.,]2u[0, we see that only the first and third term
of Eq. ~9! contribute to] i(Di j ] j )u. Finally, with expansion
~6!, the diffusion term is reduced to

] i~Di j ] ju!5@~A1Bz!]x
21DT]z

2#u, ~10!

where

A5DL cos2 u01DT sin2 u0 ,

B522k~cosu0 sinu0!~DL2DT!. ~11!

We conclude from Eq.~10! that, under twisting, the effective
two-dimensional diffusivity tensor keeps its diagonal natu
however, itsx component acquires a gradient in thez direc-
tion. Therefore, in contrast to the case of uniform anisotro
the medium cannot be made isotropic~even effectively, for
the scroll considered! by a trivial rescaling of one of the
spatial directions. It can, however, be made spatially u
form, as described further on.

Transformation II.A global rescaling, (x,z)→(j,z):

j5~DT /A!1/2x, ~12!

to obtain local isotropy atz5z0 (z50). Equation~10! be-
comes

] i~Di j ] ju!5DTF S 11
B

A
z D ]j

21]z
2Gu, ~13!

where, atz50, the operators]j
2 and]z

2 now have the same
coefficient.

Transformation III. A quadratic transformation, (j,z)
→(X,Z):

X5j2
B

2A
jz, Z5z1

B

4A
j2. ~14!

For smallB/A, and after some partial-derivative algebra, th
leads directly to the desired form,

] i~Di j ] ju!5DT@]X
21]Z

21~B/2A!]Z#u1o@~B/A!2#,
~15!

with A andB given by Eq.~11!. The term (B/2A)]Zu corre-
sponds to a convection with velocityBDT/2A in the 2Z
direction for the variableu only.

Some comments are of interest at this stage.
~1! The device of a quadratic transformation to remov

gradient was first applied in Ref.@9#, where the medium was
assumed locally isotropic. The details of the transformat
are different, however: In that reference, the transforma
is conformal, whereas here, in Eq.~14!, it is not.

~2! Comparison of Eqs.~10! and~15! shows that a relative
gradientB/A in Eq. ~10! gives rise to a convectionB/2A in
Eq. ~15!. The factor 1/2, which is not present in Ref.@9#, is
to be expected here from the fact that the twist, being ab
thez axis, changes the propagation velocity in thex direction
but not in thez direction. In contrast, Ref.@9# deals with a
gradient in both principal velocities.
e

;

,

i-

a
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~3! Is transformation~14! the only one, to orderB/A, that
removes the gradient? Uniqueness~up to trivial translations
of order B/A in the XZ plane! can be demonstrated by a
suming a general form

X5j1aXj21bXjz1cXz2,

Z5z1aZj21bZjz1cZz2, ~16!

and requiring the gradient’s removal; solving for the coe
cientsaX , . . . ,cZ then yields Eqs.~14!.

~4! As expected intuitively from the fact that both grad
ent and drift are seen inxz projection only, the sign of these
quantities does not depend on whether the twist is righ
left handed. Indeed, for a givenz, changing the sign ofk in
Eq. ~1! also changes the sign ofu ~or u0), and thus the sign
of B in Eq. ~11! is invariant. We takek.0 for convenience.

IV. DRIFT VELOCITY AND TRAJECTORY

In this section we make use of the transformations
scribed above in order to predict the actual filament drift
twisted anisotropy on the basis of the~simpler! uniformly
convective scenario. Suppose that, in a preliminary calc
tion or from theory, we have solved, too(B/A), for the drift
velocity of a spiral obeying the FHN equations~2! and ~3!,
but with a diffusivity term given by Eq.~15!. We assume, as
is in fact the case here, that any drift is entirely gradie
induced or convection induced, i.e., that there is no mean
ing. BecauseB/2A depends on parameters and coordinat
as shown in Eq.~11!, it is convenient to replace that quantit
for reference, by a small and positive, but otherwise ar
trary, standard perturbationG. Thus, we setBDT/2A→G,
and look up the existing solution for the drift velocityV,
whose magnitude is proportional toG, and whose direction
is independent ofG @9#. Hence we are able to refer to
‘‘standard drift vector’’V/G, independent ofG. How is the
actual drift of the scroll filament, sayW, related toV/G?
We consider the instant of time when the centers of the
ral’s core and of the scroll’s filament coincide with the orig
of coordinates (z5Z50). Because transformation~14! be-
comes the identity at that location, we only invert transfo
mation ~12! in order to get fromV/G to W/(BDT/2A). We
then have

Wx5S A

DT
D 1/2S BDT

2A D S VX

G D , ~17!

Wz5S BDT

2A D S VZ

G D , ~18!

the answer to our problem.
In order to determine the equilibrium planes, we exam

the sign ofVZ . In what follows it is convenient to select
standard case as typical, and to reverse signs where ap
priate. From the study of spiral drift in Ref.@9# it appears
thatVZ andB usually have opposite signs, unless the spira
quite sparse, as happens under weak excitability. Thus,
consider the case of opposite signs and assumeVZ,0, so
that B.0, and from Eq.~11!

p/2k,z,p/k ~modulop/k!. ~19!
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1848 PRE 61WELLNER, BERENFELD, AND PERTSOV
The complementary intervals haveVZ.0. Figure 2 shows
the resultant equilibrium planes, stable and unstable.

The complete space-time trajectory of the drifting fil
ment can now be found, still under the assumption of a
cally determined drift velocity. We first note that, in the un
form mediumXZ, and in the absence of meandering, t
drift angleG ~angle from the1Z direction toV) is constant
throughout the~rectilinear! trajectory. How doesG map into
G8, the local drift angle of the actual filament? From Eq
~17! and ~18! we have

Wz

Wx
5S DT

A D 1/2VZ

VX
, ~20!

or

cotG85S DT

A D 1/2

cotG, ~21!

whereG is considered known, and (DT /A)1/2 depends onz0
through Eq.~11!. In what follows we drop the subscript ‘‘0’’
of Eq. ~5! in order to consider the full range ofz within the
bounds of Eq.~19!. To determine the trajectory it is conve
nient to solve for bothx andt in terms ofz. Consideringx(z)
first, we usedz/dx5Wz /Wx5cotG8, or from the explicit
expression for Eq.~21!,

x5
tanG

k E
p/2

kz S DL

DT
cos2 u1sin2 u D 1/2

du ~22!

~an incomplete elliptic integral of the second kind; the low
integration limit is arbitrary, since we can start the filame
at anyx). Figure 2 shows a family of such trajectories.
Fig. 3, we compare Eq.~22! with simulation points from Ref.
@8#.

Next, to findt(z), we combine Eqs.~18! and ~11!:

dz

dt
52S VZ

G D kDT~DL2DT!coskzsinkz

DL cos2 kz1DT sin2 kz
, ~23!

which integrates to

DL lnusinkzu2DT lnucoskzu

52
VZ

G
k2DT~DL2DT!t1const. ~24!

FIG. 2. A family of spatial trajectories for the filament in th
case of a clockwise rotating scroll. The filament is oriented alo
they direction; itsxz projection is a point that moves away from a
unstable plane~e.g., dashed line! and towards an adjacent stab
plane~e.g., heavy line!. Which trajectory is the actual one depen
on the filament’s initial position.
-

.

r
t

~The origin oft is arbitrary.! This formula is plotted in Fig. 4
together with the corresponding data from Ref.@8#. Close to
stable equilibrium (kz5p/21ks, s.0 small! we have

s'~const!e2t/t,
1

t
52

VZ

G
k2~DL2DT!, ~25!

while close to unstable equilibrium (kz5p2ks, s.0 small!
we have

g

FIG. 3. Trajectory of a simulated filament’sxz projection in the
FHN-type model. The motion is top right to bottom left, and rela
to a clockwise rotating scroll. Formula~22! ~solid curve! accounts
very well for the drift data~points!. The curve, which is a segmen
from Fig. 2, can be translated arbitrarily in thex direction. In this
and the next figure, thez coordinate has been given the origin an
scale employed in Ref.@8#. As a consequence, the theoretical sta
equilibrium layer, where the filament and fibers are aligned, is
z51.875.

FIG. 4. The filament’sz coordinate as a function of time. Th
origin of t is arbitrary. The agreement between theory and simu
tion is very good except for some pinning on lattice sites where
perturbation due to the twisted anisotropy is weak.



an
he

e
tio

io

-
e

tu
b

le

b

a
nd
ur

r
-
g
lin
o

tio
e
th
a
o

o
f
to

ed
p
n

gh
d

he

ov
th
,
in

s
ur
v

e

hey
re
ry.
l to

t if
tal
°.

the

ef.

lls,
ight
in

to
as
of

of

sly
der

an
n-
icu-
ting

s

lel
t’s
us
ich
ter-
-
can
stic

ch
n,

o.

PRE 61 1849PREDICTING FILAMENT DRIFT IN TWISTED ANISOTROPY
s'~const!e1t/t8,
1

t8
52

VZ

G
k2

DT

DL
~DL2DT!. ~26!

We see that the filament is repelled from the unstable pl
at DT /DL'1/9 times the rate at which it approaches t
stable plane.

An interesting alternative exists to the situation just d
scribed. Suppose that, in the convective system, simula
or experiment findsVZ.0, contrary to the2z paradigm
studied here. This means a drift opposite to the convect
as happens@9,11# with the sparse spirals~and therefore
sparse scrolls! that typically occur in weakly excitable me
dia. In Eqs.~25! and ~26! the exponents change sign; th
stable and unstable equilibrium planes exchange their na
and the stable equilibrium layers are now predicted to
those where filament and fibers are mutually at right ang

V. CONCLUSION

This paper has examined the mathematical relation
tween two different drift phenomena:~a! the alignment of a
scroll filament with the local tissue fibers—or sometimes
right angles to them—due to their twisting orientation, a
~b! the drift of a spiral wave in a convective medium. O
central results are the transformed diffusive term of Eq.~15!
and the drift formulas~22! and ~23!. We have here anothe
instance~complementing Refs.@9,10#! where the analytic ap
proach to perturbative vortex drift turns out to be rewardin
The reason is that, while the unperturbed situation is non
ear and perhaps tractable only numerically, the perturbed
amounts to an essentially linear problem in the perturba
if the latter is not too strong. In the present case, one mod
perturbation can have its effect deduced from that of ano
mode. More generally, we view our study as a step in
ongoing effort to gain some perturbative understanding
drift phenomena.

Our results carry a specific message about the validity
local filament dynamics, as formulated in our case o
straight filament without torsion. In this case, according
local filament dynamics, the drift of a filament is determin
only by its immediate environment. This is our only assum
tion, which we use to justify a linear expansion of the no
uniform diffusivity components; Figs. 3 and 4 display a hi
degree of consistency with local filament dynamics. In ad
tion, Fig. 4 is an excellent test for the details of t
quadratic-transformation method, Eqs.~14!, especially in-
volving the factorB/2A in Eq. ~15!. Even though we study
straight filaments, the message of local dynamics carries
to curved filaments. It confirms the appropriateness of
often-made assumption that the filament’s local curvature
not too strong, determines its local drift, as for example
the shrinking of scroll rings@3#. The relevance to scroll ring
is due to the fact that, mathematically, filament curvat
amounts to a case of convective perturbation. Universal
e
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lidity of local filament dynamics should, however, not b
inferred from the present work.

As far as the available simulation data are concerned, t
are selected from Ref.@8# among those trajectories that a
expected to be least affected by proximity to a bounda
That work uses a reasonable adaptation of the FHN mode
physiological conditions. The unperturbed scroll (DL→DT
51) then has a cycle wavelength~not too close to the center!
of about 25 mm and a pulse width~for the fast variableu) of
about 8.5 mm; thus, the scroll is not very dense, at leas
only the extent of the fast variable is considered. The to
medium thickness is 15 mm, with a total fiber twist of 120
~Boundary effects appeared to be minor.! On the other hand,
we find only about 0.25 mm for the filament diameter~de-
fined by the region where the variableu deviates from its
resting value by less than 50% of the maximal amount;
90% filament is about 1 mm in diameter!, a fact which tends
to justify our linear expansion. We refer the reader to R
@8# for further details about the parameters.

A word of caution is needed concerning sparse scro
and the fact that their stable orientation appears to be at r
angles to the fibers. Two complications must be kept
mind.

~a! Drift in the 2z direction, as we have seen, is related
a model with convection in that direction. Such a model,
we mentioned, is also used to understand the shrinking
scroll rings, and that shrinking is often interpreted in terms
a positive ‘‘tension’’ in the filament@12#. Positive tension
promotes a form of stability that tends to restore previou
straight filaments under perturbation. Conversely, un
weak excitability, we expect a negative tension and hence
intrinsic shape instability for a straight filament. We co
clude that, under weak excitability, the expected perpend
lar alignment process could well be obscured by a compe
instability.

~b! A large core, which is typical of sparse spirals, allow
the spiral tip to range more widely overz, possibly weaken-
ing the convergence of our linear expansion inz.

Finally, we note that, in finite samples of tissue, paral
drift is not the only mechanism that results in the filamen
alignment with the fibers. There exists a simultaneo
boundary effect, not considered in the present article, wh
starts at the ends of the filament and eventually helps de
mine its equilibrium direction@8#. Even though both mecha
nisms lead to alignment and are concurrent in time, they
be distinguished observationally through their characteri
time scales, which are in general quite different.
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